翻訳と辞書
Words near each other
・ Kemmlitzbach
・ Kemmons Wilson
・ Kemmu
・ Kemmy Business School
・ Kemmy Pilato
・ Kemna concentration camp
・ Kemnal Park Cemetery & Memorial Gardens
・ Kemnal Technology College
・ Kemnath
・ Kemnay
・ Kemnay Academy
・ Kemnay railway station
・ Kemnay, Manitoba
・ Kemneriella
・ Kemnitz
Kemnitz's conjecture
・ Kemo
・ Kemo Dukla Trencin
・ KEMO-TV
・ Kemoh Fadika
・ Kemoh Sesay
・ Kemokai Kallon
・ KeMonito
・ Kemono no Sōja
・ Kemonozume
・ Kemopetrol
・ Kemora Circuit
・ Kemosabe (song)
・ Kemosabe Records
・ Kemoy Campbell


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kemnitz's conjecture : ウィキペディア英語版
Kemnitz's conjecture
In additive number theory, Kemnitz's conjecture states that every set of lattice points in the plane has a large subset whose centroid is also a lattice point. It was proved independently in the autumn of 2003 by Christian Reiher and Carlos di Fiore.
The exact formulation of this conjecture is as follows:
:Let n be a natural number and S a set of 4''n'' − 3 lattice points in plane. Then there exists a subset S_1 \subseteq S with n points such that the centroid of all points from S_1 is also a lattice point.
Kemnitz's conjecture was formulated in 1983 by Arnfried Kemnitz as a generalization of the Erdős–Ginzburg–Ziv theorem, an analogous one-dimensional result stating that every 2''n'' − 1 integers have a subset of size ''n'' whose average is an integer. In 2000, Lajos Rónyai proved a weakened form of Kemnitz's conjecture for sets with 4''n'' − 2 lattice points. Then, in 2003, Christian Reiher proved the full conjecture using the Chevalley–Warning theorem.
==References==

*
*
*
*
*
*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Kemnitz's conjecture」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.